Plant breeding is the science of changing the traits of plants in order to produce desired characteristics.Breeding Field Crops. 1995. Sleper and Poehlman. Page 3 It is used to improve the quality of plant products for use by humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules (proteins, sugars, lipids, vitamins, fibers) and ease of processing (harvesting, milling, baking, malting, blending, etc.).
Plant breeding can be performed using many different techniques, ranging from the selection of the most desirable plants for propagation, to methods that make use of knowledge of genetics and chromosomes, to more complex molecular techniques. Genes in a plant are what determine what type of qualitative or quantitative traits it will have. Plant breeders strive to create a specific outcome of plants and potentially new plant varieties, and in the course of doing so, narrow down the genetic diversity of that variety to a specific few biotypes.
It is practiced worldwide by individuals such as gardeners and farmers, and by professional plant breeders employed by organizations such as government institutions, universities, crop-specific industry associations or research centers. International development agencies believe that breeding new crops is important for ensuring food security by developing new varieties that are higher yielding, disease resistant, drought tolerant or regionally adapted to different environments and growing conditions.
A recent study shows that without plant breeding, Europe would have produced 20% fewer arable crops over the last 20 years, consuming an additional of land and emitting of carbon. Wheat species created for Morocco are currently being crossed with plants to create new varieties for northern France. Soy beans, which were previously grown predominantly in the south of France, are now grown in southern Germany.
Grafting technology had been practiced in China before 2000 BCE.
By 500 BCE grafting was well established and practiced.
Gregor Mendel (1822–84) is considered the "father of genetics". His experiments with plant hybridization led to his establishing laws of inheritance. Genetics stimulated research to improve crop production through plant breeding.
Selective breeding played a crucial role in the Green Revolution of the 20th century.
Modern plant breeding is applied genetics, but its scientific basis is broader, covering molecular biology, cell biology, systematics, physiology, pathology, entomology, chemistry, and statistics (biometrics). It has also developed its own technology.
Another technique is the deliberate interbreeding (crossing) of closely or distantly related individuals to produce new crop varieties or lines with desirable properties. Plants are crossbred to introduce traits/ from one variety or line into a new genetic background. For example, a mildew-resistant pea may be crossed with a high-yielding but susceptible pea, the goal of the cross being to introduce mildew resistance without losing the high-yield characteristics. Progeny from the cross would then be crossed with the high-yielding parent to ensure that the progeny were most like the high-yielding parent, (backcrossing). The progeny from that cross would then be tested for yield (selection, as described above) and mildew resistance and high-yielding resistant plants would be further developed. Plants may also be crossed with themselves to produce inbred line for breeding. Pollinators may be excluded through the use of .
Classical breeding relies largely on homologous recombination between chromosomes to generate genetic diversity. The classical plant breeder may also make use of a number of in vitro techniques such as somatic fusion, embryo rescue or mutagenesis (see below) to generate diversity and produce hybrid plants that would not exist in nature.
Traits that breeders have tried to incorporate into crop plants include:
In the early 20th century, plant breeders realized that Gregor Mendel's findings on the non-random nature of inheritance could be applied to seedling populations produced through deliberate to predict the frequencies of different types. Wheat hybrids were bred to increase the crop production of Italy during the so-called "Battle for Grain" (1925–1940). Heterosis was explained by George Harrison Shull. It describes the tendency of the progeny of a specific cross to outperform both parents. The detection of the usefulness of heterosis for plant breeding has led to the development of inbred lines that reveal a heterotic yield advantage when they are crossed. Maize was the first species where heterosis was widely used to produce hybrids.
statistics methods were also developed to analyze gene action and distinguish heritable variation from variation caused by environment. In 1933 another important breeding technique, cytoplasmic male sterility (CMS), developed in maize, was described by Marcus Morton Rhoades. CMS is a maternally inherited trait that makes the plant produce sterile pollen. This enables the production of hybrids without the need for labor-intensive detasseling.
These early breeding techniques resulted in large yield increase in the United States in the early 20th century. Similar yield increases were not produced elsewhere until after World War II, the Green Revolution increased crop production in the developing world in the 1960s.
When distantly related species are crossed, plant breeders make use of a number of plant tissue culture techniques to produce progeny from otherwise fruitless mating. Interspecific and intergeneric hybrids are produced from a cross of related species or genera that do not normally reproduction with each other. These crosses are referred to as Wide crosses. For example, the cereal triticale is a wheat and rye hybrid. The cells in the plants derived from the first generation created from the cross contained an uneven number of chromosomes and as a result was sterile. The cell division inhibitor colchicine was used to double the number of in the cell and thus allow the production of a fertile line.
Failure to produce a hybrid may be due to pre- or post-fertilization incompatibility. If fertilization is possible between two species or genera, the hybrid embryo may abort before maturation. If this does occur the embryo resulting from an interspecific or intergeneric cross can sometimes be rescued and cultured to produce a whole plant. Such a method is referred to as embryo rescue. This technique has been used to produce new rice for Africa, an interspecific cross of Asian rice Oryza sativa and African rice O. glaberrima.
Hybrids may also be produced by a technique called protoplast fusion. In this case protoplasts are fused, usually in an electric field. Viable recombinants can be regenerated in culture.
Chemical like ethyl methanesulfonate (EMS) and dimethyl sulfate (DMS), radiation, and are used for mutagenesis. Mutagenesis is the generation of mutants. The breeder hopes for desirable traits to be bred with other – a process known as mutation breeding. Classical plant breeders also generate genetic diversity within a species by exploiting a process called somaclonal variation, which occurs in plants produced from tissue culture, particularly plants derived from callus. Induced polyploidy, and the addition or removal of chromosomes using a technique called chromosome engineering may also be used.
When a desirable trait has been bred into a species, a number of crosses to the favored parent are made to make the new plant as similar to the favored parent as possible. Returning to the example of the mildew resistant pea being crossed with a high-crop yield but susceptible pea, to make the mildew resistant progeny of the cross most like the high-yielding parent, the progeny will be crossed back to that parent for several generations (See backcrossing). This process removes most of the genetic contribution of the mildew resistant parent. Classical breeding is therefore a cyclical process.
With classical breeding techniques, the breeder does not know exactly what genes have been introduced to the new cultivars. Some therefore argue that plants produced by classical breeding methods should undergo the same safety testing regime as genetically modified plants. There have been instances where plants bred using classical techniques have been unsuitable for human consumption, for example the poison solanine was unintentionally increased to unacceptable levels in certain varieties of potato through plant breeding. New potato varieties are often screened for solanine levels before reaching the marketplace.
Even with the very latest in biotech-assisted conventional breeding, incorporation of a genotypic trait takes an average of seven for clonally propagated crops, nine for self-fertilising, and seventeen for cross-pollinating.
To genetically modify a plant, a genetic construct must be designed so that the gene to be added or removed will be expressed by the plant. To do this, a promoter to drive transcription and a termination sequence to stop transcription of the new gene, and the gene or genes of interest must be introduced to the plant. A marker for the selection of transformed plants is also included. In the laboratory, antibiotic resistance is a commonly used marker: Plants that have been successfully transformed will grow on media containing antibiotics; plants that have not been transformed will die. In some instances markers for selection are removed by backcrossing with the parent plant prior to commercial release.
The construct can be inserted in the plant genome by genetic recombination using the bacteria Agrobacterium tumefaciens or A. rhizogenes, or by direct methods like the gene gun or microinjection. Using plant to insert genetic constructs into plants is also a possibility, but the technique is limited by the host range of the virus. For example, Cauliflower mosaic virus (CaMV) only infects cauliflower and related species. Another limitation of viral vectors is that the virus is not usually passed on to the progeny, so every plant has to be inoculated.
The majority of transgenic crop are currently limited to plants that have introduced resistance to insect pests and . Insect resistance is achieved through incorporation of a gene from Bacillus thuringiensis (Bt) that encodes a protein that is toxic to some insects. For example, the Helicoverpa zea, a common cotton pest, feeds on Bt cotton it will ingest the toxin and die. Herbicides usually work by binding to certain plant enzymes and inhibiting their action. The enzymes that the herbicide inhibits are known as the herbicide's "target site". Herbicide resistance can be engineered into crops by expressing a version of target site protein that is not inhibited by the herbicide. This is the method used to produce glyphosate resistant ("Roundup Ready") crop plants.
Genetic modification can further increase yields by increasing stress tolerance to a given environment. Stresses such as temperature variation, are signalled to the plant via a cascade of signalling molecules which will activate a transcription factor to regulate gene expression. Overexpression of particular genes involved in cold acclimation has been shown to produce more resistance to freezing, which is one common cause of yield loss
Genetic modification of plants that can produce (and industrial chemicals), sometimes called pharming, is a rather radical new area of plant breeding.
The debate surrounding genetically modified food during the 1990s peaked in 1999 in terms of media coverage and risk perception, and continues today – for example, " Germany has thrown its weight behind a growing European mutiny over genetically modified crops by banning the planting of a widely grown pest-resistant corn variety." The debate encompasses the ecological impact of genetically modified plants, the safety of genetically modified food and concepts used for safety evaluation like substantial equivalence. Such concerns are not new to plant breeding. Most countries have regulatory processes in place to help ensure that new crop varieties entering the marketplace are both safe and meet farmers' needs. Examples include variety registration, seed schemes, regulatory authorizations for GM plants, etc.
...cite this study:
In maize, for example, breeding has altered the nitrogen cycling taxa required to the rhizosphere, with more modern lines recruiting less Diazotroph taxa and more nitrifiers and denitrifiers. Microbiomes of breeding lines showed that hybrid plants share much of their bacterial community with their parents, such as Cucurbita seeds and apple shoot endophytes. In addition, the proportional contribution of the microbiome from parents to offspring corresponds to the amount of genetic material contributed by each parent during breeding and domestication.
machine learning and especially [[deep machine learning|deep learning]] has recently become more commonly used in [[phenotyping]]. [[Computer vision]] using ML has made great strides and is now being applied to leaf phenotyping and other phenotyping jobs typically performed by human eyes. Pound et al. 2017 and Singh et al. 2016 are especially salient examples of early successful application and demonstration of the general usability of the process across ''multiple'' target plant species. These methods will work even better with large, publicly available open data sets.
A 2019 review of participatory plant breeding indicated that it had not gained widespread acceptance despite its record of successfully developing varieties with improved diversity and nutritional quality, as well as greater likelihood of these improved varieties being adopted by farmers. This review also found participatory plant breeding to have a better cost/benefit ratio than non-participatory approaches, and suggested incorporating participatory plant breeding with evolutionary plant breeding.
In 1929, Harlan and Martini proposed a method of plant breeding with heterogeneous populations by pooling an equal number of F2 seeds obtained from 378 crosses among 28 geographically diverse barley cultivars. In 1938, Harlan and Martini demonstrated evolution by natural selection in mixed dynamic populations as a few varieties that became dominant in some locations almost disappeared in others; poorly-adapted varieties disappeared everywhere.
Evolutionary breeding populations have been used to establish self-regulating plant–pathogen systems. Examples include barley, where breeders were able to improve resistance to Rynchosporium secalis scald over 45 generations. An evolutionary breeding project grew Hybrid seed bulk soybean populations on soil infested by the soybean cyst nematode and was able to increase the proportion of resistant plants from 5% to 40%. The International Center for Agricultural Research in the Dry Areas (ICARDA) evolutionary plant breeding is combined with participatory plant breeding in order to allow farmers to choose which varieties suit their needs in their local environment.
An influential 1956 effort by Coit A. Suneson to codify this approach coined the term evolutionary plant breeding and concluded that 15 generations of natural selection are desirable to produce results that are competitive with conventional breeding. Evolutionary breeding allows working with much larger plant population sizes than conventional breeding. It has also been used in tandem with conventional practices in order to develop both heterogeneous and homogeneous crop lines for low input agricultural systems that have unpredictable stress conditions.
Evolutionary plant breeding has been delineated into four stages:
Conventional breeding intentionally limits phenotype plasticity within genotypes and limits variability between genotypes. Uniformity does not allow crops to adapt to climate change and other biotic stresses and abiotic stresses.
Intellectual property legislation for plants often uses definitions that typically include genetic uniformity and unchanging appearance over generations. These legal definitions of stability contrast with traditional agronomic usage, which considers stability in terms of how consistent the yield or quality of a crop remains across locations and over time.
As of 2020, regulations in Nepal only allow uniform varieties to be registered or released. Evolutionary plant populations and many landraces are polymorphic and do not meet these standards.
Plant breeding can contribute to global food security as it is a cost-effective tool for increasing nutritional value of forage and crops. Improvements in nutritional value for forage crops from the use of analytical chemistry and rumen fermentation technology have been recorded since 1960; this science and technology gave breeders the ability to screen thousands of samples within a small amount of time, meaning breeders could identify a high performing hybrid quicker. The genetic improvement was mainly in vitro dry matter digestibility (IVDMD) resulting in 0.7-2.5% increase, at just 1% increase in IVDMD a single Bos Taurus also known as beef cattle reported 3.2% increase in daily gains. This improvement indicates plant breeding is an essential tool in gearing future agriculture to perform at a more advanced level.
Currently, few breeding programs are directed at organic agriculture and until recently those that did address this sector have generally relied on indirect selection (i.e. selection in conventional environments for traits considered important for organic agriculture). However, because the difference between organic and conventional environments is large, a given genotype may perform very differently in each environment due to an interaction between genes and the environment (see gene–environment interaction). If this interaction is severe enough, an important trait required for the organic environment may not be revealed in the conventional environment, which can result in the selection of poorly adapted individuals. To ensure the most adapted varieties are identified, advocates of organic breeding now promote the use of direct selection (i.e. selection in the target environment) for many agronomic traits.
There are many classical and modern breeding techniques that can be utilized for crop improvement in organic agriculture despite the ban on genetically modified organisms. For instance, controlled crosses between individuals allow desirable genetic variation to be recombined and transferred to seed progeny via natural processes. Marker assisted selection can also be employed as a diagnostics tool to facilitate selection of progeny who possess the desired trait(s), greatly speeding up the breeding process. This technique has proven particularly useful for the introgression of resistance genes into new backgrounds, as well as the efficient selection of many resistance genes pyramided into a single individual. Molecular markers are not currently available for many important traits, especially complex ones controlled by many genes.
|
|